FIND ME ON

GitHub

LinkedIn

Existence of Invariant measure

🌱

Definition
StochasticProcesses

Finite State space

Every finite state space Markov chain admits an Invariant probability measure.

Assume SS is finite and PP is irreducible. Then PP must be positive recurrent, and hence has a unique invariant distribution. # Countable state space

For an Irreducible Markov chain with countable X\mathbb{X}, there can be at most one Invariant probability measure.

Uncountable state space

Let αX\alpha \subset \mathbb{X} be an atom such that Eα[Tα(1)]<E_{\alpha}[T_{\alpha}^{(1)}]<\infty (i.e. positive recurrent) then {Xi}i=1\{ X_{i} \}_{i=1}^{\infty} admits an invariant probability measure.

or

Let {Xi}i=1\{ X_{i} \}_{i=1}^{\infty} be Irreducible, and aperiodic. If α\alpha is (n-μ)-small for some nZ+n\in \mathbb{Z}_{+} and Eα[τα]<E_{\alpha}[\tau_{\alpha}]<\infty (i.e. positive recurrent) then there exists invariant π\pi.

or

Let {Xi}i=1\{ X_{i} \}_{i=1}^{\infty} be Harris Recurrent. If α\alpha is petite and Eα[τα]<E_{\alpha}[\tau_{\alpha}]<\infty (i.e. positive recurrent) then the Markov chain is Positive Harris Recurrent (and \exists unique invariant π\pi).

Note

X countable    all finite set are small/petiteX uncountable    all compact sets are small/petite\begin{align*} \mathbb{X}\text{ countable}&\implies \text{all finite set are small/petite}\\ \mathbb{X}\text{ uncountable}&\implies \text{all compact sets are small/petite} \end{align*}