Let S be a petite set, b∈R, ϵ>0,and V:X→R+, Let {Xk}k∈N be a Irreducible MC. If the following is satisfied ∀x∈X E[V(xk+1)∣xk=x]≤V(x)−ϵ+b1{x∈S} then {Xk}k∈N is Positive Harris Recurrent (equivalently ∃ an Invariant probability measure π).
Let S be a petite set, b∈R+, and V:X→R+, f:X→[0,∞) for some ϵ>0. Let {xk}k∈N be a Markov chain. If the following holds E[V(xk+1)∣xk=x]≤V(x)−ϵ+b, x∈Xthen for any Invariant probability measure π we have finite expectation ∫f(x)π(dx)≤b
Let S be a compact set, b<∞, and V:X→R+ s.t. ∀α∈R+, {x:V(x)≤α} is compact or equivalently ∥x∥→∞limV(x)=∞Let {xk}k∈N be a Markov chain. Furthermore, let τS=min{t>0:xt∈S}, τBN={t>0:xt∈BN} where BN={z:V(z)≥N}, if we have that Px(min(τS,τBN)<∞)=1then ∀x∈X, E[V(xk+1)∣xk=x]≤V(x)+b1{x∈S}⟹P(τS<∞)=1