NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (Xt)t≥0(X_{t})_{t\ge 0}(Xt)t≥0 be right continuous and (Ft)t≥0(\mathcal{F}_{t})_{t\ge 0}(Ft)t≥0-adapted. Then (Xt)t≥0 is (Ft)t≥0(X_{t})_{t\ge 0}\text{ is }(\mathcal{F}_{t})_{t\ge 0}(Xt)t≥0 is (Ft)t≥0-martingale if and only if ∀\forall∀ bounded (Ft)t≥0(\mathcal{F}_{t})_{t\ge 0}(Ft)t≥0-stopping times TTT: 1. XT∈L1(Ω,F,P)X_{T}\in\mathscr{L}^{1}(\Omega,\mathcal{F},P)XT∈L1(Ω,F,P) 2. E[XT]=E[X0]E[X_{T}]=E[X_{0}]E[XT]=E[X0]