Let X0,X1,… be a sequence of Borel spaces and, for n=0,1,… define Yn:=X0×⋯×Xn and Y:=∏n=0∞Xn. Let ν be an arbitrary probability measure on X0 and for every n=0,1,…, let Pn(dxn+1∣yn) be a Stochastic Kernel on Xn+1 given Yn. Then there exists a unique probability measure Pν on Y s.t., for every measurable rectangle B0×⋯×Bn in Yn
Pν(B0×⋯×Bn)=B0∫ν(dx0)B1∫P0(dx1∣x0)B2∫P1(dx2∣x0,x1)⋯Bn∫Pn−1(dxn∣x0,…,xn−1)
^statement
Moreover, for any nonnegative measurable function u on Y, the function x↦∫u(y)Px(dy) is measurable on X0, where Px stands for Pν when ν is the probability Concentrated at x∈X0.
Source
Hernández-Lerma, Onésimo, and Jean B. Lasserre. Discrete-time Markov control processes: basic optimality criteria. Vol. 30. Springer Science & Business Media, 2012.