FIND ME ON

GitHub

LinkedIn

Basis

🌱

Definition
Topology

A subcollection B⊆T\mathcal{B}\subseteq \mathscr{T} of a topology T\mathscr{T} on a topological space XX is a basis for the topology T\mathscr{T} if given an open set UU and point p∈Up \in U, there is an open set B∈BB\in \mathcal{B} such that p∈B⊂Up ∈ B ⊂ U, i.e. ∀U∈T,∀p∈U,∃B∈B:p∈B⊂U.\forall U\in \mathscr{T},\forall p \in U,\exists B\in \mathcal{B}:p \in B\subset U.We also say that B\mathcal{B} generates the topology T\mathscr{T} or that B\mathcal{B} is a basis for the topological space XX.

A collection B\mathcal{B} of open sets of XX is a if and only if every open set in XX is a union of sets in B\mathcal{B} i.e. B is a basis  ⟺  ∀U∈T,∃(Bn)n≥1⊆B:U=⋃nBn\mathcal{B}\text{ is a basis}\iff \forall U\in \mathscr{T}, \exists(B_{n})_{n\ge 1}\subseteq \mathcal{B}:U=\bigcup_{n}B_{n}

Linked from