FIND ME ON

GitHub

LinkedIn

Convergence

🌱

Definition

Let (X,T)(X,\mathscr{T}) be a topological space. 1. A sequence {xj}j∈N\{ x_{j} \}_{j\in \mathbb{N}} converges to x∈Xx\in X in the topology T\mathscr{T} if, for each neighbourhood U\mathcal{U} of xx, there exists N∈NN\in \mathbb{N} such that xj∈Ux_{j}\in \mathcal{U} for each j≄Nj\ge N. If {xj}j∈N\{ x_{j} \}_{j\in \mathbb{N}} converges to xx, we may write lim⁔jā†’āˆžxj=x.\lim_{ j \to \infty } x_{j}=x. 2. A sequence {xj}j∈N\{ x_{j} \}_{j\in \mathbb{N}} is convergent if it converges to some point in XX.