FIND ME ON

GitHub

LinkedIn

Sequentially Compact

🌱

Definition
FunctionalAnalAnalysis

A Topological Space KK is sequentially compact if for every sequence (xn)n∈NāŠ†K( x_{n} )_{n\in \mathbb{N}}\subseteq K, one can find a convergent subsequence in KK i.e.Ā āˆ€(xn)n∈NāŠ†K,∃(nk)k∈N:lim⁔kā†’āˆžxnk=x∈K\forall(x_{n})_{n\in \mathbb{N}}\subseteq K , \exists (n_{k})_{k\in \mathbb{N}}:\lim_{ k \to \infty } x_{n_{k}}=x\in K

In a Metric Space we have that Compactness is equivalent to sequential compactness.

Linked from