NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
š±
A Topological Space KKK is sequentially compact if for every sequence (xn)nāNāK( x_{n} )_{n\in \mathbb{N}}\subseteq K(xnā)nāNāāK, one can find a convergent subsequence in KKK i.e.Ā ā(xn)nāNāK,ā(nk)kāN:limā”kāāxnk=xāK\forall(x_{n})_{n\in \mathbb{N}}\subseteq K , \exists (n_{k})_{k\in \mathbb{N}}:\lim_{ k \to \infty } x_{n_{k}}=x\in Kā(xnā)nāNāāK,ā(nkā)kāNā:kāālimāxnkāā=xāK
In a Metric Space we have that Compactness is equivalent to sequential compactness.
Ļ-compact
Notions of Compactness