NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
A Metric Space (X,d)(X, d)(X,d) is called totally bounded iff ∀ϵ>0,∃Y⊂X,∣Y∣<∞:∀x∈X,∃y∈Y:d(x,y)<ϵ\forall\epsilon>0, \exists Y \subset X,|Y|<\infty : \forall x \in X,\exists y\in Y : d(x,y)<\epsilon∀ϵ>0,∃Y⊂X,∣Y∣<∞:∀x∈X,∃y∈Y:d(x,y)<ϵ
Compactness implies totally boundedness.
Compact
A Metric Space is Separable.
Arzelà-Ascoli
Polish space
σ-compact
Precompact
Notions of Compactness