FIND ME ON

GitHub

LinkedIn

Heine-Borel Theorem

🌱

Theorem
Analysis

In metric spaces a subset is compact if and only if it is closed and bounded.

Let XX and YY be Topological Spaces, and let f:XYf:X\to Y be Continuous. If KK is a Compact subset of XX, then f(K)f(K) is Compact.

\begin{proof} If {Vα}\{ V_{\alpha} \} is an open cover of f(K)f(K), then {f1(Vα)}\{ f^{-1}(V_{\alpha}) \} is an open cover of KK, hence Kf1(Vα1)f1(Vαn)K\subset f^{-1}(V_{\alpha_{1}})\cup\dots \cup f^{-1}(V_{\alpha_{n}}) for some α1,,αn\alpha_{1},\dots,\alpha_{n} and therefore (since f(f1(Vαi))Vαif(f^{-1}(V_{\alpha_{i}}))\subset V_{\alpha_{i}}) f(K)f(i=1nf1(Vαi))=f(i=1n{xX:f(x)Vαi})=f({xX:f(x)i=1nVαi})=i=1nVαi.\begin{align*} f(K)&\subset f\left( \bigcup_{i=1}^{n}f^{-1}(V_{\alpha_{i}}) \right)\\ &= f\left( \bigcup_{i=1}^{n}\{x \in X:f(x)\in V_{\alpha_{i}} \} \right)\\ &= f\left( \left\{ x \in X:f(x)\in \bigcup_{i=1}^{n}V_{\alpha_{i}} \right\} \right)\\ &= \bigcup_{i=1}^{n}V_{\alpha_{i}}. \end{align*} \end{proof}

Linked from