FIND ME ON

GitHub

LinkedIn

Kohonen Network

🌱

MachineLearning

Definition

Combines both Hamming Network and MaxNet, in sequence, then brings the winner node closer to the input node. # Algorithm 1. Initialize random weights and learning rate η\eta. 2. Find the winning cluster jj (of mm clusters) which is the cluster closest to the input vector x=[x1xn]x=[x_{1}\ldots x_{n}] (minimize the squared distance of each cluster’s weight with respective element of vector) with each cluster’s associated weight wj,iw_{j,i} minj=1,..mD(j)=minj=1,..m{i=1n(xiwj,i)2}\min_{j=1,..m} D(j)=\min_{j=1,..m}\left\{\sum\limits_{i=1}^{n}(x_{i}-w_{j,i})^{2}\right\} 3. Update each wj,iw_{j,i} for the chosen jj like so: Δwj,i=η(t)(xiwj,i), wj,i=wj,iΔwj,i\Delta w_{j,i}=\eta(t)(x_{i}-w_{j,i}), \ w_{j,i}=w_{j,i}-\Delta w_{j,i}for i{1,,n}i\in\{1,\ldots,n\} 4. Repeat until network converges.