FIND ME ON

GitHub

LinkedIn

Abelian Group

🌱

Definition
NumberTheoryAbstractAlgebra

An abelian group is a group with the added property: - Commutativity: gā‹…h=hā‹…g,Ā āˆ€g,h∈Gg\cdot h=h\cdot g, \ \forall g,h\in G

or to define it in a self contained way:

An abelian group is a pair (G,ā‹…)(G,\cdot) where GG is a set and ā‹…\cdot is a binary operation on elements of GG such that: 1. Closure: g,h∈Gā€…ā€ŠāŸ¹ā€…ā€Šgā‹…h∈Gg,h\in G\implies g\cdot h\in G 2. Associativity: (gā‹…h)ā‹…k=gā‹…(hā‹…k)(g\cdot h)\cdot k=g\cdot(h\cdot k) 3. Existence of Identity: ∃1:1ā‹…g=g\exists1:1\cdot g=g 4. Existence of Inverse: āˆ€g∈G,∃gāˆ’1∈G\forall g\in G,\exists g^{-1}\in G such that gāˆ’1ā‹…g=1g^{-1}\cdot g=1 5. Commutativity: gā‹…h=hā‹…g,Ā āˆ€g,h∈Gg\cdot h=h\cdot g, \ \forall g,h\in G

Linked from