FIND ME ON

GitHub

LinkedIn

Field

🌱

Definition
NumberTheoryAbstractAlgebra

A field is a triple (F,+,ā‹…)(\mathbb{F},+,\cdot) such that 1. (F,+)(\mathbb{F},+) is an abelian group 2. (Fāˆ—,ā‹…)(\mathbb{F}^{*},\cdot) (where Fāˆ—=Fāˆ–{0}\mathbb{F}^{*}=\mathbb{F}\setminus\{ 0 \}) is an abelian group 3. Distributivity: aā‹…(b+c)=ab+ac(b+c)ā‹…a=ba+ca\begin{align*} a\cdot(b+c)=ab+ac\\ (b+c)\cdot a=ba+ca \end{align*}

Linked from