FIND ME ON

GitHub

LinkedIn

Inner Product

🌱

Definition
FunctionalAnal

Definition

An inner product of an F\mathbb{F}-Vector Space VV assigns to vectors v1,v2Vv_{1},v_{2}\in V the number v1,v2F\langle v_{1}, v_{2} \rangle\in\mathbb{F} and the assignment satisfies the following rules: 1. Symmetryv1,v2=v2,v1\langle v_{1}, v_{2} \rangle =\overline{\langle v_{2}, v_{1} \rangle} for v1,v2Vv_{1},v_{2}\in V. 2. Linearitya1v1+a2v2,v=a1v1,v+a2v2,v\langle a_{1}v_{1}+a_{2}v_{2}, v \rangle=a_{1}\langle v_{1}, v \rangle +a_{2}\langle v_{2}, v \rangle for a1,a2Fa_{1},a_{2}\in\mathbb{F} 3. Positivity v,v0\langle v, v \rangle \ge 0for vVv\in V 4. Definiteness v,v=0    v=0v\langle v, v \rangle =0\iff v=0_{v}

Linked from