Definition
An inner product of an F-Vector Space V assigns to vectors v1,v2∈V the number ⟨v1,v2⟩∈F and the assignment satisfies the following rules: 1. Symmetry⟨v1,v2⟩=⟨v2,v1⟩for v1,v2∈V. 2. Linearity⟨a1v1+a2v2,v⟩=a1⟨v1,v⟩+a2⟨v2,v⟩for a1,a2∈F 3. Positivity ⟨v,v⟩≥0for v∈V 4. Definiteness ⟨v,v⟩=0⟺v=0v