FIND ME ON

GitHub

LinkedIn

Vector Space

🌱

Definition
LinearAlgebra

There are four main components to a vector space: 1. A set VV 2. A field F\mathbb{F} 3. An operation “++” that allows us to add together elements of VV 4. An operation “\cdot” that allows us to multiply, or scale, an element of VV

Notation (V×WV\times W)

Given two sets VV and WW, we can make a new set V×WV\times W, which we would call the product of VV and WW, that is: V×W:={(v,w)vV,wW} \begin{align*} V\times W:=\{(v,w)|v\in V,w\in W\} \end{align*} or that V×WV\times W produces a new set of pairs of elements where the first element is all possible values of VV and the same for the second and WW.

Definition (Vector Space)

An F\mathbb{F}-vector space is a set VV, together with an addition operation V×VV(v,w)v+w \begin{align*} V \times V &\longrightarrow V\\ (v,w) &\longmapsto v+w\\ \end{align*} and a scalar multiplication operation F×VV(c,v)cv \begin{align*} \mathbb{F} \times V &\longrightarrow V\\ (c,v)&\longmapsto c\cdot v \end{align*} (i.e. defined as (V,+,)(V,+,\cdot)) that satisfy the following six rules: 1. Commutativity: If v,wVv,w \in V then v+w=w+v\begin{align*}v+w=w+v\end{align*} 2. Associativity: If u,v,wVu,v,w\in V and a,bFa,b\in\mathbb{F} then (u+v)+w=u+(v+w)(ab)v=a(bv) \begin{align*} (u+v)+w&=u+(v+w) \newline (ab)\cdot v&=a\cdot (b\cdot v) \end{align*} 3. Additive identity: There is an element 0V0\in V such that for vVv\in V, 0+v=v0+v=v 4. Additive inverse: For every vVv\in V there is a wWw\in W such that v+w=0v+w=0 5. Multiplicative identity: For all vVv\in V, 1v=v\begin{align*} 1\cdot v=v \end{align*} 6. Distributivity: Given a,bFa,b\in \mathbb{F} and v,wVv,w\in V, we have: a(v+w)=av+aw(a+b)v=av+bv \begin{align*} a\cdot(v+w)&=a\cdot v+a\cdot w \newline (a+b)\cdot v&=a\cdot v+b\cdot v \end{align*}

Notation (Set of Functions)

Let SS be any set. We use the notation FS\mathbb{F}^S to denote the set of function from SS to F\mathbb{F}.

Example: Sequences of real numbers: (ak)k=0(a_k)_{k=0}^\infty, this describes a function f:NRf:\mathbb{N}\mapsto\mathbb{R} where f(k)=akf(k)=a_k. So (ak)k=0(a_k)_{k=0}^\infty can be considered an element of RN\mathbb{R}^\mathbb{N}.

Notation (Polynomials)

A polynomial of one variable, with coefficients in F\mathbb{F}, is an expression of the form p(t)=antn+an1tn1+...+a1t+ao \begin{align*} p(t)=a_nt^n+a_{n-1}t^{n-1}+...+a_1t+a_o \end{align*} where aiFa_i\in\mathbb{F}, i=0,1,...n\forall i=0,1,...n. The degree of pp, denoted deg(pdeg(p), is given by deg(p)=max{kak0} \begin{align*} deg(p)=max\{k|a_k\not=0\} \end{align*} We use F[t]\mathbb{F}[t] to denote the set of all polynomial with coefficients in F\mathbb{F}, and we use F[t]n\mathbb{F}[t]_{\leq n} to denoted the set of all polynomials with degree n\leq n.

Linked from