NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
š±
Let V,W,UV,W,UV,W,U be vector spaces and let {v1,...,vn},{w1,...,wm}\{v_1,...,v_n\},\{w_1,...,w_m\}{v1ā,...,vnā},{w1ā,...,wmā} and {u1,...,up}\{u_1,...,u_p\}{u1ā,...,upā} be bases for V,W,UV,W,UV,W,U respectively. If TāL(V,W)T\in\mathscr{L}(V,W)TāL(V,W) and SāL(W,U)S\in\mathscr{L}(W,U)SāL(W,U) then M(SāT)=M(S)M(T)\mathcal{M}(S\circ T) = \mathcal{M}(S)\mathcal{M}(T)M(SāT)=M(S)M(T)