FIND ME ON

GitHub

LinkedIn

Conditions for Diagonalizability

🌱

Theorem
LinearAlgebra

Proposition (Equivalent conditions for diagonalizability)

Let VV be a Finite Dimensional vector space, where dim(V)=ndim(V)=n, and TL(V)T\in\mathscr{L}(V). If λ1,,λm\lambda_1,\cdots,\lambda_m are all distinct eigenvalues of TT, then the following statements are equivalent. 1. TT is diagonalizable 2. There is a basis for VV consisting of eigenvectors of TT 3. There exists 1-dimensional subspaces W1,,WnW_1,\cdots,W_n of VV, each of which are invariant under TT, such that V=W1WnV=W_1\oplus\cdots\oplus W_n. 4. VV is a direct sum of eigenspaces. That is, V=\mboxKer(Tλ1IV)\mboxKer(TλmIV)V=\mbox{Ker}(T-\lambda_{1}I_{V})\oplus\cdots\oplus\mbox{Ker}(T-\lambda_{m}I_{V}) 5. \mboxdim(V)=\mboxdim(\mboxKer(Tλ1IV))\mboxdim(\mboxKer(TλmIV))\mbox{dim}(V)=\mbox{dim}(\mbox{Ker}(T-\lambda_{1}I_{V}))\oplus\cdots\oplus\mbox{dim}(\mbox{Ker}(T-\lambda_{m}I_{V}))