FIND ME ON

GitHub

LinkedIn

Eigenvector

🌱

Definition
LinearAlgebra

Definition

For TL(V)T\in\mathscr{L}(V), and eigenvector of TT is a non-zero vector vVv\in V such that T(v)=λvT(v)=\lambda v for some λF\lambda\in\mathbb{F}. The value λ\lambda is called an eigenvalue of TT. If λ\lambda is an eigenvalue of TT, then the set of eigenvectors Wλ={vVT(v)=λv}W_\lambda=\{v\in V|T(v)=\lambda v\}is a subspace of VV, and we call WλW_\lambda the eigenspace corresponding to the eigenvalue λ\lambda.

Remark

We can interpret the subspace WλW_\lambda as the kernel of the map TλIVT-\lambda I_V. If (TλIV)(v)=0(T-\lambda I_V)(v)=0, then we can rearrange this equation to get T(v)=λIV(v)=λvT(v)=\lambda I_V(v)=\lambda v. Therefore \mboxKer(TλIV)=Wλ\mbox{Ker}(T-\lambda I_V)=W_\lambda.

Linked from