FIND ME ON

GitHub

LinkedIn

Stationary Distribution

🌱

Definition
InfoTheory

For a Markov chain {Xi}\{X_i\} with alphabet X\mathcal{X} of size X=m|\mathcal{X}|=m and transition matrix Q=PijQ=P_{ij}, a distribution (or pmf) Π\Pi on X\mathcal{X} is called stationary (or “steady state”) distribution for the MC if aX\forall a\in\mathcal{X} Π(a)=bXΠ(b)Pij\Pi(a)=\sum\limits_{b\in\mathcal{X}}\Pi(b)P_{ij} or equivalently in matrix form Π=ΠQ\vec\Pi=\vec\Pi\cdot Q Π\Pi is row eigenvector of QQ with associated eigenvalue 1 (λΠ=ΠQ, λ=1\lambda\vec\Pi=\vec\Pi\cdot Q, \ \lambda=1) where Π:=(Π1,,Πm)\vec\Pi:=(\Pi_{1},\cdots,\Pi_{m})where Πk=Π(xk), k=1,,m,\mboxandX={x1,,xm}\Pi_{k}=\Pi(x_{k}), \ k=1,\cdots,m, \mbox{ and } \mathcal{X}=\{x_{1},\cdots,x_{m}\}

For a finite-alphabet MC (time-invariant), Π\Pi always exists. Also, if the MC is irreducible, then Π\Pi is unique.

Linked from