FIND ME ON

GitHub

LinkedIn

Trace and Determinant with Eigenvalues

🌱

Theorem
LinearAlgebra

Theorem

Let A={aij}\mathbf{A}=\{ a_{ij} \} be a k×kk\times k matrix of real elements with eigenvalues λ1,,λk\lambda_{1},\dots,\lambda_{k} (counting multiplicities) then Tr(A)=i=1kaii=i=1kλi\mathrm{Tr}(\mathbf{A})=\sum_{i=1}^{k}a_{ii}=\sum_{i=1}^{k}\lambda_{i}and det(A)=i=1kλi\det(\mathbf{A})=\prod_{i=1}^{k}\lambda_{i}