NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let A={aij}\mathbf{A}=\{ a_{ij} \}A={aij} be a k×kk\times kk×k matrix of real elements with eigenvalues λ1,…,λk\lambda_{1},\dots,\lambda_{k}λ1,…,λk (counting multiplicities) then Tr(A)=∑i=1kaii=∑i=1kλi\mathrm{Tr}(\mathbf{A})=\sum_{i=1}^{k}a_{ii}=\sum_{i=1}^{k}\lambda_{i}Tr(A)=i=1∑kaii=i=1∑kλiand det(A)=∏i=1kλi\det(\mathbf{A})=\prod_{i=1}^{k}\lambda_{i}det(A)=i=1∏kλi