Let AβMnβ(R) and BβRn. Then the eigenvalues of A+BF can be assigned arbitrarily if (A,B) is Controllable. i.e.Β if (A,B) controllable then βMβMnβ(R),βFβM1Γnβ(R):XA+BFβ(s)=XMβ(s)where X(β
) denotes the characteristic polynomial.
Let AβMnβ(R) and BβMnΓmβ(R). Then the eigenvalues of A+BF can be assigned arbitrarily if (A,B) is Controllable. i.e.Β if (A,B) controllable then βMβMnβ(R),βFβM1Γnβ(R):XA+BFβ(s)=XMβ(s)where X(β
) denotes the characteristic polynomial.
Let AβMnβ(R),BβMnΓmβ(R) and suppose (A,B) is not Controllable, then βMβMnβ(R):βFβMmΓnβ(R)XA+BFβ(s)ξ =XMβ(s)