FIND ME ON

GitHub

LinkedIn

Controllable

🌱

Control

Consider a LTVC system {xĖ™(t)=A(t)x(t)+B(t)u(t)x(t0)=x0\begin{cases} \dot{x}(t)=A(t)x(t)+B(t)u(t) \\ x(t_{0})=x_{0} \end{cases}with controllability gramian WW. The subspace Image(W(t0,t1))\text{Image}(W(t_{0},t_{1})) is called the controllable subspace for the pair (t0,t1)(t_{0},t_{1}).

A LTVC system {xĖ™(t)=A(t)x(t)+B(t)u(t)x(t0)=x0∈Rn\begin{cases} \dot{x}(t)=A(t)x(t)+B(t)u(t) \\ x(t_{0})=x_{0}\in\mathbb{R}^{n} \end{cases}is said to be controllable for the pair (t0,t1)(t_{0},t_{1}) if the controllable subspace is the entire state space. i.e.Ā Image(W(t0,t1))=Rn\text{Image}(W(t_{0},t_{1}))=\mathbb{R}^{n}

Consider dxdt=Ax(t)+Bu(t)\frac{dx}{dt}=Ax(t)+Bu(t)The pair (A,B)(A,B) is said to be controllable if for any x(0)=x0∈Rnx(0)=x_{0}\in\mathbb{R}^{n} and xf∈Rnx_{f}\in\mathbb{R}^{n}, there exists T<āˆžT<\infty and a control input {us,0≤s≤T}\{ u_{s},0\le s\le T \} so that xT=xfx_{T}=x_{f}.

So in other words, our system is controllable if it can be manipulated to be in any state in euclidean space.

Linked from