NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let A∈Mn(R)A\in M_{n}(\mathbb{R})A∈Mn(R) and B∈RnB\in\mathbb{R}^{n}B∈Rn s.t. (A,B)(A,B)(A,B) is Controllable. Then ∃T∈Mn(R)\exists T\in M_{n}(\mathbb{R})∃T∈Mn(R) with det(T)≠0\det(T)\not=0det(T)=0 s.t. TAT−1=[010…0001…0⋮⋮⋮⋮−a0−a1−a2…−an−1]TB=[00⋮1]TAT^{-1}=\begin{bmatrix}0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -a_{0} & -a_{1} & -a_{2} & \dots & -a_{n-1}\end{bmatrix}\quad TB=\begin{bmatrix}0 \\ 0 \\ \vdots \\ 1\end{bmatrix}TAT−1=00⋮−a010⋮−a101⋮−a2………00⋮−an−1TB=00⋮1where ai∈Ra_{i}\in\mathbb{R}ai∈R (i.e. there exists a Weighting Pattern that yields a controllability canonical form).