FIND ME ON

GitHub

LinkedIn

Controllability Canonical Form

🌱

Control

Let AMn(R)A\in M_{n}(\mathbb{R}) and BRnB\in\mathbb{R}^{n} s.t. (A,B)(A,B) is Controllable. Then TMn(R)\exists T\in M_{n}(\mathbb{R}) with det(T)0\det(T)\not=0 s.t. TAT1=[01000010a0a1a2an1]TB=[001]TAT^{-1}=\begin{bmatrix}0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -a_{0} & -a_{1} & -a_{2} & \dots & -a_{n-1}\end{bmatrix}\quad TB=\begin{bmatrix}0 \\ 0 \\ \vdots \\ 1\end{bmatrix}where aiRa_{i}\in\mathbb{R} (i.e. there exists a Weighting Pattern that yields a controllability canonical form).