FIND ME ON

GitHub

LinkedIn

Controllability & Observability w.r.t. Riccati

🌱

Theorem
StochasticControl

Theorem

Consider the system xt+1=Axt+But,yt=Cxtx_{t+1}=Ax_{t}+Bu_{t},\quad y_{t}=Cx_{t} 1. If (A,B)(A,B) is controllable there exists a solution to the Riccati Equation P=Q+ATPAβˆ’ATP+B(R+BTPB)βˆ’1BTPAP=Q+A^{T}PA-A^{T}P+B(R+B^{T}PB)^{-1}B^{T}PA 2. If (A,B)(A,B) is controllable and, with Q=CTCQ=C^{T}C, (A,C)(A,C) is observable; as tβ†’βˆžt\to\infty the sequence of Riccati recursions Pt=Q+ATPt+1Aβˆ’ATPt+1+B(R+BTPt+1B)βˆ’1BTPt+1AP_{t}=Q+A^{T}P_{t+1}A-A^{T}P_{t+1}+B(R+B^{T}P_{t+1}B)^{-1}B^{T}P_{t+1}Aconverges to some limit PP that satisfies P=Q+ATPAβˆ’ATP+B(R+BTPB)βˆ’1BTPAP=Q+A^{T}PA-A^{T}P+B(R+B^{T}PB)^{-1}B^{T}PAThat is, convergence takes place for any initial condition PΛ‰\bar{P}. Furthermore, such a PP is unique, and is positive definite. Finally under the optimal stationary control policy ut=βˆ’(BTPB+R)βˆ’1BTPAxtu_{t}=-(B^{T}PB+R)^{-1}B^{T}PAx_{t}the solution to xt+1=Axt+Butx_{t+1}=Ax_{t}+Bu_{t} is stable; i.e.Β xtβ†’0x_{t}\to0 3. Under the conditions of 2, the stationary policy above minimizes lim sup⁑Nβ†’βˆž1NExΞ³[βˆ‘t=0Nβˆ’1xtTQxt+utTRut]\limsup_{ N \to \infty } \frac{1}{N}E_{x}^{\gamma}\left[ \sum_{t=0}^{N-1}x_{t}^{T}Qx_{t}+u_{t}^{T}Ru_{t} \right] for the following system xt+1=Axt+But+wtx_{t+1}=Ax_{t}+Bu_{t}+w_{t}for every x∈Rnx\in\mathbb{R}^{n}. Furthermore, the optimal cost is E[wTPw]=Trace(PW)E[w^{T}Pw]=\text{Trace}(PW).