FIND ME ON

GitHub

LinkedIn

Riccati Equation

🌱

Theorem
StochasticControl

Theorem

For the LQ problem, let JN=QNJ_{N}=Q_{N} and Pt=Q+ATPt+1Aāˆ’ATPt+1+B(R+BTPt+1B)āˆ’1BTPt+1AP_{t}=Q+A^{T}P_{t+1}A-A^{T}P_{t+1}+B(R+B^{T}P_{t+1}B)^{-1}B^{T}P_{t+1}Awith final condition PN=QNP_{N}=Q_{N}.

The optimal cost is infā”Ī³āˆˆĪ“AJ(x,γ)=J(x0)=x0TP0x0+E[wtTPt+1wt]\inf_{\gamma\in\Gamma_{A}}J(x,\gamma)=J(x_{0})=x_{0}^{T}P_{0}x_{0}+E[w_{t}^{T}P_{t+1}w_{t}]with our optimal control being γtāˆ—=āˆ’(BTPt+1B+R)āˆ’1BTPt+1Axt\gamma_{t}^{*}=-(B^{T}P_{t+1}B+R)^{-1}B^{T}P_{t+1}Ax_{t}

Linked from