FIND ME ON

GitHub

LinkedIn

Linear Quadratic Problem

🌱

Theorem
StochasticControl

Consider the following linear control system xt+1=Axt+But+wtx_{t+1}=Ax_{t}+Bu_{t}+w_{t}where x,wRn,uRmx,w\in\mathbb{R}^{n},u\in\mathbb{R}^{m}. Suppose that {wt}t0\{ w_{t} \}_{t\ge 0} is iid with E[wt]=0,E[wtwtT]=WE[w_{t}]=0,E[w_{t}w_{t}^{T}]=W, t0\forall t\ge 0. The goal is to find the minimum cost, infγΓAJ(x,γ)=infγΓAExγ[(k=0N1xkTQxk+ukTRuk)+xNTQNxNterminal cost]\inf_{\gamma\in\Gamma_{A}}J(x,\gamma)=\inf_{\gamma\in\Gamma_{A}}E_{x}^{\gamma}\left[\left( \sum_{k=0}^{N-1}x_{k}^{T}Qx_{k}+u_{k}^{T}Ru_{k} \right)+ \underbrace{ x_{N}^{T}Q_{N}x_{N} }_{ \text{terminal cost} } \right]where Q=QT0Q=Q^{T}\ge 0 positive semidefinite and R=RT>0R=R^{T}>0 positive definite.

Linked from