FIND ME ON

GitHub

LinkedIn

Observable

🌱

Control

An LTVC System is said to be observable for the pair (t0,t1)(t_{0},t_{1}) if Ker(M(t0,t1))={0āƒ—}(ā€…ā€ŠāŸŗā€…ā€ŠImage(M(t0,t1))=Rn)\text{Ker}(M(t_{0},t_{1}))=\{ \vec{0} \}(\iff \text{Image}(M(t_{0},t_{1}))=\mathbb{R}^{n})


Consider dxdt=Ax(t)+Bu(t),y(t)=Cx(t)+Du(t)\frac{dx}{dt}=Ax(t)+Bu(t),\quad y(t)=Cx(t)+Du(t)The pair (A,C)(A,C) is said to be observable if for any x(0)=x0∈Rnx(0)=x_{0}\in\mathbb{R}^{n} there exists T<āˆžT<\infty s.t. the knowledge of {(ys,us),0≤s≤T}\{ (y_{s},u_{s}),0\le s\le T \} is sufficient to uniquely determine x(0)x(0).

Linked from