An LTVC System is said to be observable for the pair (t0ā,t1ā) if Ker(M(t0ā,t1ā))={0}(āŗImage(M(t0ā,t1ā))=Rn)
Consider dtdxā=Ax(t)+Bu(t),y(t)=Cx(t)+Du(t)The pair (A,C) is said to be observable if for any x(0)=x0āāRn there exists T<ā s.t. the knowledge of {(ysā,usā),0ā¤sā¤T} is sufficient to uniquely determine x(0).