FIND ME ON

GitHub

LinkedIn

Observability Normal Form

🌱

Control

Similar to the Controllability Normal Form we can construct the observability normal form: xˉ˙=[Aˉ110Aˉ21Aˉ22]xˉ(t)+Bˉu(t)y(t)=[Cˉ10]xˉ(t)\begin{align*} \dot{\bar{x}}&=\begin{bmatrix}\bar{A}_{11} & 0 \\ \bar{A}_{21} & \bar{A}_{22}\end{bmatrix}\bar{x}(t)+\bar{B}u(t)\\ y(t)&=\begin{bmatrix}\bar{C}_{1} & 0\end{bmatrix}\bar{x}(t) \end{align*}with the property that the pair (Cˉ1,Aˉ11)(\bar{C}_{1},\bar{A}_{11}) is Observable.

Linked from