FIND ME ON

GitHub

LinkedIn

Linear Time Varying Control System

🌱

Control

We define a linear time varying control system to be one of the form {x˙(t)=A(t)x(t)+B(t)u(t)x(t0)=x0\begin{cases} \dot{x}(t)=A(t)x(t)+B(t)u(t) \\ x(t_{0})=x_{0} \end{cases}where AC(J;Mn(R)), BC(J;Mn×m(R))A\in C(J;M_{n}(\mathbb{R})),\ B\in C(J;M_{n\times m}(\mathbb{R})).

Existence & Uniqueness

Let JRJ\subset \mathbb{R} be any interval, and let t0t_{0} be an internal point of JJ, (i.e. t0int(J)t_{0}\in \text{int}(J)). Let A:JMn(R)A:J\to M_{n}(\mathbb{R}) be continuous. Then !xC1(J;Rn)\exists!x\in C^{1}(J;\mathbb{R}^{n}) that solves {x˙(t)=A(t)x(t)x(t0)=x0\begin{cases} \dot{x}(t)&=A(t)x(t) \\ x(t_{0}) & =x_{0} \end{cases} We can then refine this theorem in the case where JJ is a closed and bounded interval

Let a,bRa,b\in\mathbb{R} with a<ba<b and let A:[a,b]Mn(R)A:[a,b]\to M_{n}(\mathbb{R}) be continuous. Suppose t0(a,b)t_{0}\in(a,b), then !xC1([a,b];Rn)\exists!x\in C^{1}([a,b];\mathbb{R}^{n}) that solves {x˙(t)=A(t)x(t)x(t0)=x0\begin{cases} \dot{x}(t)&=A(t)x(t) \\ x(t_{0}) & =x_{0} \end{cases} In class we first proved 2 then used 2 to easily prove 1.

In the course of proving the above, we introduced a limit matrix ΦA(t,t0)\Phi_{A}(t,t_{0}) where ΦA(t,t0)=limkXk(t)\Phi_{A}(t,t_{0})=\lim_{ k \to \infty }X_{k}(t)where we defined {Xk(t)}kN\{ X_{k}(t) \}_{k\in\mathbb{N}} as a sequence of functions on Mn(R)M_{n}(\mathbb{R}) (i.e. {Xk(t)}kNMn(R)\{ X_{k}(t) \}_{k\in\mathbb{N}}\subset M_{n}(\mathbb{R})) that converge to a solution X(t):[a,b]Mn(R)X(t):[a,b]\to M_{n}(\mathbb{R})

Let JRJ\subseteq \mathbb{R} be a non-empty interval. Let t0t_{0} be an internal point of JJ and A:JMn(R)A:J\to M_{n}(\mathbb{R}). Then {X˙(t)=A(t)X(t)X(t0)=In\begin{cases} \dot{X}(t)&=A(t)X(t) \\ X(t_{0})&=I_{n} \end{cases}has a unique C1C^{1} solution which is given by our transition matrix ΦA(t,t0)\Phi_{A}(t,t_{0}).

We then went on to prove the same for the controlled variant

Let JRJ\subset \mathbb{R} be a non-empty interval. There is a unique solution to the following LTVC system {x˙(t)=A(t)x(t)+B(t)u(t)x(t0)=x0\begin{cases} \dot{x}(t)&=A(t)x(t)+B(t)u(t) \\ x(t_{0}) & =x_{0} \end{cases}given by x(t)=ΦA(t,t0)x0+t0tΦA(t,τ)B(τ)u(τ)dτx(t)=\Phi_{A}(t,t_{0})x_{0}+\int\limits _{t_{0}}^{t}\Phi_{A}(t,\tau)B(\tau)u(\tau) \, d\tau where ΦA(t,t0)\Phi_{A}(t,t_{0}) is the Transition Matrix.

Controllability

Consider a LTVC system {x˙(t)=A(t)x(t)+B(t)u(t)x(t0)=x0\begin{cases} \dot{x}(t)=A(t)x(t)+B(t)u(t) \\ x(t_{0})=x_{0} \end{cases}Let t0,t1Jt_{0},t_{1}\in J, t0<t1t_{0}<t_{1} and let x0,x1Rnx_{0},x_{1}\in\mathbb{R}^{n}. Then, \exists some control uC([t0,t1];Rm)u\in C([t_{0},t_{1}];\mathbb{R}^{m}) which “steers” the system from x(t0)=x0x(t_{0})=x_{0} to x(t1)=x1x(t_{1})=x_{1} if and only ifΦA(t0,t1)x1x0Image(W(t0,t1))\Phi_{A}(t_{0},t_{1})x_{1}-x_{0}\in \text{Image}(W(t_{0},t_{1}))holds, where W(t0,t1)=t0t1ΦA(t0,τ)B(τ)BT(τ)ΦAT(t0,τ)dτW(t_{0},t_{1})=\int\limits _{t_{0}}^{t_{1}}\Phi_{A}(t_{0},\tau)B(\tau)B^{T}(\tau)\Phi^{T}_{A}(t_{0},\tau) \, d\tau is our controllability gramian. Therefore, the control input u(t)u(t) is defined as u(t)=BT(t)ΦAT(t0,t)ηu(t)=B^{T}(t)\Phi_{A}^{T}(t_{0},t)\eta where ηRn\eta\in\mathbb{R}^{n} s.t. ΦA(t0,t1)x1x0=W(t0,t1)η\Phi_{A}(t_{0},t_{1})x_{1}-x_{0}=W(t_{0},t_{1})\eta gives the desired transfer.

Observability

Consider the LTVC System introduced in the Observability Problem: x˙(t)=A(t)x(t)+B(t)u(t)y(t)=C(t)x(t)+D(t)u(t)\begin{align*} \dot{x}(t)=A(t)x(t)+B(t)u(t)\\ y(t)=C(t)x(t)+D(t)u(t) \end{align*}The initial state can be uniquely determined (i.e. our system is Observable) if Ker(M(t0,t1))={0}\text{Ker}(M(t_{0},t_{1}))=\{ \vec{0} \}

Realization

Suppose (A,B,C)(A,B,C) is a LTVC System Realization of T:J×JMp×n(R)T:J\times J\to M_{p\times n}(\mathbb{R}). Then (A~,B~,C~)(\tilde{A},\tilde{B},\tilde{C}) with A~(t)=P˙(t)P1(t)+P(t)A(t)P1(t)B~(t)=P(t)B(t)C~(t)=C(t)P1(t)\begin{align*} \tilde{A}(t)&=\dot{P}(t)P^{-1}(t)+P(t)A(t)P^{-1}(t)\\ \tilde{B}(t)&=P(t)B(t)\\ \tilde{C}(t)&=C(t)P^{-1}(t) \end{align*}where P:JMn×n(R)P:J\to M_{n\times n}(\mathbb{R}) is C1C^{1} and non singular is also a Realization.

Linked from