FIND ME ON

GitHub

LinkedIn

Realization Problem

🌱

Control

Problem

Consider a special case of LTVC Systems: {x˙(t)=A(t)x(t)+B(t)u(t)y(t)=C(t)x(t)\begin{cases} \dot{x}(t)=A(t)x(t)+B(t)u(t) \\ y(t)=C(t)x(t) \end{cases}where D=0D=0 and x(t0)=0x(t_{0})=0. Recall from Linear Time Varying Control System that x(t)=ΦA(t,t0)x0+t0tΦA(t,τ)B(τ)u(τ)dτx(t)=\Phi_{A}(t,t_{0})x_{0}+\int\limits _{t_{0}}^{t}\Phi_{A}(t,\tau)B(\tau)u(\tau) \, d\tau hence, y(t)=C(t)x(t)=C(t)ΦA(t,t0)x0+t0tC(t)ΦA(t,τ)B(τ)T(t,τ)u(τ)dτ=t0t1T(t,τ)u(τ)dτ\begin{align*} y(t)=C(t)x(t)&=C(t)\Phi_{A}(t,t_{0})x_{0}+\int\limits _{t_{0}}^{t}\underbrace{ C(t)\Phi_{A}(t,\tau)B(\tau) }_{ T(t,\tau) }u(\tau) \, d\tau \\ &=\int\limits _{t_{0}}^{t_{1}}T(t,\tau)u(\tau) \, d\tau \end{align*}We call T:J×JMp×n(R)T:J\times J\to M_{p\times n}(\mathbb{R}) the Weighting Pattern of the LTVC system. The question we pose is: > Given a mapping T:J×JMp×n(R)T:J\times J\to M_{p\times n}(\mathbb{R}) does A,B,C\exists A,B,C continuous maps s.t. T(t,τ)=C(t)ΦA(t,τ)B(τ)T(t,\tau)=C(t)\Phi_{A}(t,\tau)B(\tau)?

If yes, we say TT is Realizable and (A,B,C)(A,B,C) is the Realization of TT.