Let RX be the autocorrelation matrix for our input X. We first order the eigenvalues of RX s.t. λ1≥⋯≥λk≥0and let u1,…,uk be the corresponding orthogonaleigenvectors. We then normalize ui to unit length ∥ui∥=1,i=1,…,kNow we define U=[u1u2…uk] and let T=UT=u1Tu2T⋮ukT We call T the Karhunen-Loeve transform (KLT) matrix for X.