FIND ME ON

GitHub

LinkedIn

Karhunen-Loeve Transform

🌱

Definition
InfoTheory

Definition

Let RX\mathbf{R_{X}} be the autocorrelation matrix for our input X\mathbf{X}. We first order the eigenvalues of RX\mathbf{R_{X}} s.t. λ1λk0\lambda_{1}\ge \dots\ge \lambda_{k}\ge 0and let u1,,uk\mathbf{u}_{1},\dots,\mathbf{u}_{k} be the corresponding orthogonal eigenvectors. We then normalize ui\mathbf{u}_{i} to unit length ui=1,i=1,,k\lVert \mathbf{u}_{i} \rVert =1, \quad i=1,\dots,kNow we define U=[u1u2uk]\mathbf{U}=\begin{bmatrix}\mathbf{u}_{1}&\mathbf{u}_{2}&\dots&\mathbf{u}_{k}\end{bmatrix} and let T=UT=[u1Tu2TukT]\mathbf{T}=\mathbf{U}^{T}=\begin{bmatrix}\mathbf{u}_{1}^{T}\\\mathbf{u}_{2}^{T}\\\vdots\\\mathbf{u}_{k}^{T}\end{bmatrix} We call TT the Karhunen-Loeve transform (KLT) matrix for X\mathbf{X}.

Remarks

Linked from