FIND ME ON

GitHub

LinkedIn

Itô Stochastic Integral

🌱

Definition
StochasticDiffs

Definition

Let XEX\in\mathcal{E} and let (Mt)t0(M_{t})_{t\ge 0} be a right continuous L2L^{2}-martingale. We define XdM=i=1nai1Fi(MtiMsi)\int\limits X \, dM =\sum_{i=1}^{n}a_{i}\mathbb{1}_{F_{i}}(M_{t_{i}}-M_{s_{i}})to be the Itô Stochastic Integral.

Properties

  1. The integral is R\mathbb{R}-linear (i=0n1(si,ti]×Fi)dM=i=0n1(si,ti]×FidM\int\limits \left( \sum_{i=0}^{n}\mathbb{1}_{(s_{i},t_{i}]\times F_{i}} \right) \, dM=\sum_{i=0}^{n}\int\limits \mathbb{1}_{(s_{i},t_{i}]\times F_{i}} \, dM ## Note
  2. XdM\int\limits X \, dM is well-defined i.e. it is independent of whatever chosen representation we have for XX as a linear combination of indicator functions. In other words, we can define XX as two different sums that add to the same output a.s. but our integral regardless, will evaluate to the same output.
    1. Perhaps this helps to preserve Càdlàg versions of processes and their intervals?
  3. E\mathcal{E} the set of simple processes is a vector subspace of L2(R2×Ω,P,μM)L^{2}(\mathbb{R}^{2}\times\Omega,\mathscr{P},\mu_{M})
  4. It follows from the definition that ()dM:EL2(Ω,F,P)\int\limits (\cdot) \, dM :\mathcal{E}\to L^{2}(\Omega,\mathcal{F},P) is R\mathbb{R}-linear.

Linked from