FIND ME ON

GitHub

LinkedIn

Càdlàg

🌱

Definition
StochasticDiffs

A process is Càdlàg (i.e. right continuous with left limits) if ωΩ:tXt(ω) is right continuous and has left limits everywhere\forall\omega\in\Omega:t\mapsto X_{t}(\omega)\text{ is right continuous and has left limits everywhere}i.e. - the left limit f(t):=limstf(s)f(t-):=\lim_{ s \uparrow t^{-} }f(s) exists and; - the right limit f(t+):=limst+f(s)f(t+):=\lim_{ s \downarrow t^{+} } f(s)exists and equals f(t)f(t).

Intuition

Why right continuity? Well, here we have a great example of why: Pasted image 20240306164838.png i.e. Right continuity allows us to use the rationals when indexing time. This then allows us to use the countable properties of measure theory to do various things. ## Example Pasted image 20240303135241.png

Linked from