FIND ME ON

GitHub

LinkedIn

Existence of Càdlàg Version

🌱

Definition
StochasticDiffs

Assume (Ft)t0(\mathcal{F}_{t})_{t\ge 0} satisfies the Filtration. Let (Xt)t0(X_{t})_{t\ge 0} be a (Ft)t0(\mathcal{F}_{t})_{t\ge 0}-martingale then (Xt)t0(X_{t})_{t\ge 0} admits a Càdlàg version. i.e. (X~t)t0(Ft)t0-adapted t0 where Xt=X~t a.s.\exists(\tilde{X}_{t})_{t\ge 0} (\mathcal{F}_{t})_{t\ge 0}\text{-adapted }\forall t\ge 0\text{ where }X_{t}=\tilde{X}_{t}\text{ a.s.}

We see that the X~n\tilde{X}_{n} preserves XnX_{n}’s Martingale properties: 0s<t:X~s=Xs=E[XtFs]=E[X~tFs] a.s.\forall {0}\le s<t:\tilde{X}_{s}=X_{s}=E[X_{t}|\mathcal{F}_{s}]=E[\tilde{X}_{t}|\mathcal{F}_{s}]\text{ a.s.}