FIND ME ON

GitHub

LinkedIn

Stochastic Process

🌱

Definition
StochasticProcessesProbability

Let (Ω,F,P)(\Omega,\mathcal{F},P) be a probability space. Let T=N\mathbb{T}=\mathbb{N}. A stochastic process on (Ω,F,P)(\Omega,\mathcal{F},P) indexed by T\mathbb{T} is a family (Xt)tT(X_{t})_{t\in\mathbb{T}} of RVs on (Ω,F,P)(\Omega,\mathcal{F},P) i.e. tT:BB(R):Xt1(B)F\forall t\in\mathbb{T}:\forall B\in\mathcal{B}(\mathbb{R}):X_{t}^{-1}(B)\in\mathcal{F} We define a stochastic process as a sequence of random variables, {Xn(ω):nN}\{ X_n(\omega) : n\in\mathbb{N}\} , such that: 1. For each n0n\ge 0, Xn:ΩRX_n:\Omega\to\mathbb{R} 2. For each ωΩ\omega\in \Omega, {Xn(ω):nN}\{X_n(\omega):n\in\mathbb{N}\} is called a trajectory 3. Since {Xn(ω):nN}\{X_n(\omega):n\in\mathbb{N}\} depends on ω\omega, the trajectory is random.

Linked from