FIND ME ON

GitHub

LinkedIn

Gaussian Process

🌱

Definition
StochasticProcesses

A Stochastic Process (Xt)t∈R(X_{t})_{t\in\mathbb{R}} is called a Gaussian Process if for any finite collection of points t1,t2,…,tn∈Rt_1, t_2, \dots, t_n \in \mathbb{R}, the Random Vector X=[Xt1,Xt2,…,Xtn]⊤\mathbf{X} = [X_{t_{1}}, X_{t_{2}}, \dots, X_{t_{n}}]^\top follows a Multivariate Gaussian distribution: X∼N(m,K)\mathbf{X} \sim \mathcal{N}(\mathbf{m}, \mathbf{K})where: - m=[m(x1),m(x2),…,m(xn)]⊤\mathbf{m} = [m(x_1), m(x_2), \dots, m(x_n)]^\top is the mean vector. - K\mathbf{K} is the nƗnn \times n Covariance matrix with entries Kij=k(xi,xj)K_{ij} = k(x_i, x_j).

Linked from