A Stochastic Process (Xtā)tāRā is called a Gaussian Process if for any finite collection of points t1ā,t2ā,ā¦,tnāāR, the Random Vector X=[Xt1āā,Xt2āā,ā¦,Xtnāā]⤠follows a Multivariate Gaussian distribution: Xā¼N(m,K)where: - m=[m(x1ā),m(x2ā),ā¦,m(xnā)]⤠is the mean vector. - K is the nĆn Covariance matrix with entries Kijā=k(xiā,xjā).