The column random vectorX=(X1,⋯,Xn)T with mean vector μ=(μ1,⋯,μn)T, where μi=E[Xi],i=1,⋯,n, and covariance matrixKX (assumed to be invertible) given by KX=E[(X−μ)(X−μ)T]where the covariance — \mboxCov(Xi,Xj)=E[(xi−μi)(xj−μj)T],i=1,⋯n — is Gaussian if its joint pdf is given by: fX(x)=(2π)ndet(KX)1e−21(x−μ)TKX−1(x−μ),x=(x1,⋯,xn)T∈Rn ## Notation X∼N(μ,KX)