Definition
Let X and Y be RVs, their Covariance is defined as Cov(X,Y)=E[(X−E[X])(Y−E[Y])]=E[XY]−E[X]E[Y] # Proposition (Properties of Covariance) 1. Linearity: For α1,α2∈R Cov(X,α1Y1+α2Y2)=α1Cov(X,Y1)+α2Cov(X,Y2) 2. Independence: If X and Y are independent then Cov(X,Y)=0 # Lemma (Variance Identity) Var(αX+βY)=α2Cov(X,X)+β2Cov(Y,Y)+2αβCov(X,Y)