FIND ME ON

GitHub

LinkedIn

Covariance

🌱

Definition
ProbabilityStochasticProcesses

Definition

Let XX and YY be RVs, their Covariance is defined as Cov(X,Y)=E[(XE[X])(YE[Y])]=E[XY]E[X]E[Y]Cov(X,Y)=E[(X-E[X])(Y-E[Y])]=E[XY]-E[X]E[Y] # Proposition (Properties of Covariance) 1. Linearity: For α1,α2R\alpha_1,\alpha_2\in\mathbb{R} Cov(X,α1Y1+α2Y2)=α1Cov(X,Y1)+α2Cov(X,Y2)Cov(X,\alpha_1Y_1+\alpha_2Y_2)=\alpha_1Cov(X,Y_1)+\alpha_2Cov(X,Y_2) 2. Independence: If XX and YY are independent then Cov(X,Y)=0Cov(X,Y)=0 # Lemma (Variance Identity) Var(αX+βY)=α2Cov(X,X)+β2Cov(Y,Y)+2αβCov(X,Y)Var(\alpha X+\beta Y)=\alpha^2Cov(X,X)+\beta^2Cov(Y,Y)+2\alpha\beta Cov(X,Y)

Linked from