NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (St)t≥0(S_{t})_{t\ge 0}(St)t≥0 be a semimartingale and let XXX be a continuous adapted process. Then we define the Itô Stochastic Integral of 1[0,t]X\mathbb{1}_{[0,t]}X1[0,t]X w.r.t. SSS as ∫1[0,t]X dS=∫1[0,t]X dM⏟Itoˆ Stochastic Integral+∫1[0,t]X dA⏟Pathwise L-S Integral\int\limits \mathbb{1}_{[0,t]}X \, dS =\underbrace{ \int\limits \mathbb{1}_{[0,t]}X \, dM }_{ \text{Itô Stochastic Integral} }+\underbrace{ \int\limits \mathbb{1}_{[0,t]}X \, dA }_{ \text{Pathwise L-S Integral} } ∫1[0,t]XdS=Itoˆ Stochastic Integral∫1[0,t]XdM+Pathwise L-S Integral∫1[0,t]XdA