FIND ME ON

GitHub

LinkedIn

Semimartingale Integral

🌱

Definition
StochasticDiffs

Definition

Let (St)t0(S_{t})_{t\ge 0} be a semimartingale and let XX be a continuous adapted process. Then we define the Itô Stochastic Integral of 1[0,t]X\mathbb{1}_{[0,t]}X w.r.t. SS as 1[0,t]XdS=1[0,t]XdMItoˆ Stochastic Integral+1[0,t]XdAPathwise L-S Integral\int\limits \mathbb{1}_{[0,t]}X \, dS =\underbrace{ \int\limits \mathbb{1}_{[0,t]}X \, dM }_{ \text{Itô Stochastic Integral} }+\underbrace{ \int\limits \mathbb{1}_{[0,t]}X \, dA }_{ \text{Pathwise L-S Integral} }