Let (Mt)t≥0 be a continuous local martingale, let (Vt)t≥0 be a continuous process of Variation (i.e. locally bounded). Let f∈C0(R2;R) with ∂x∂f,∂y∂f,∂x2∂2f C0 on R2. Then we have a.s. ∀t≥0: f(Mt,Vt)=f(M0,V0)+∫1[0,t]∂x∂f(M,V)dM+[0,t]∫∂y∂f(Ms,Vs)dVs+21[0,t]∫∂x2∂2f(Ms,Vs)d[M]s