FIND ME ON

GitHub

LinkedIn

Almost Sure Convergence

🌱

Definition
ProbabilityStochasticProcesses

Let (Ω,F,P)(\Omega,\mathcal{F},P) be a probability space. Let (Xn)nN(X_{n})_{n\in\mathbb{N}} be a sequence of random variables, and XX be another RV. We say XnX_n converges with probability one (w.p.1) or almost surely to X if AF:P(Ac)=0:ωA:Xn(ω)X(ω)\exists A\in\mathcal{F}:P(A^{c})=0:\forall\omega\in A:X_{n}(\omega)\to X(\omega) or P({ωΩ: limnXn(ω)=X(ω})=1P(\{\omega\in\Omega: \ \lim_{n\to\infty}X_n(\omega)=X(\omega\})=1 Write Xna.s.X.X_n\xrightarrow{a.s.} X.

Linked from