FIND ME ON

GitHub

LinkedIn

Exponential Random Variable

🌱

Probability

A continuous RV XX is called exponential with parameter λ\lambda if its pdf is f(x)=\left\{ \begin{array} \ \lambda e^{-\lambda x}&x\ge0\\ 0&\mbox{otherwise} \end{array} \right.and cdf F(x)=\left\{ \begin{array} 01-e^{-\lambda x}&x>0\\ 0&x\le0 \end{array} \right.For RV X\mboxExp(λ)X\sim \mbox{Exp}(\lambda) E[X]=1λ\mboxVar(X)=1λ2\begin{align*} E[X]&=\frac{1}{\lambda}\\ \mbox{Var}(X)&=\frac{1}{\lambda^{2}} \end{align*} # Intuition The exponential RV is used to model the waiting time between states, if the average waiting time is constant . The parameter λ\lambda models the rate at which the states transition. See also What is the intuition behind the exponential distribution? - Mathematics Stack Exchange

For n=1,,n=1,\cdots, let XnX_n be the elapsed time between the occurrences of the n1n-1th and nnth events of a Poisson Process with rate λ\lambda. Then XnX_n is the exponential RV with parameter λ\lambda

Let TT be a RV taking positive values. Then TT has an exponential distribution if and only if it has the following memoryless property P(T>s+tT>s)=P(T>t), \mboxforalls,t0P(T>s+t|T>s)=P(T>t), \ \mbox{for all }s,t\ge0

Conditional on {T>s}\{T>s\}, then TsT-s has the same distribution of TT.

Let X1,X2,X_{1},X_{2},\ldots be a sequence of independent exponentially distributed random variables. Assume Xn\mboxExp(λn)X_{n}\sim\mbox{Exp}(\lambda_{n}) for λn>0\lambda_{n}>0 and each integer n0n\ge0, then, 1. If n=11λn<\sum\limits_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty, then P(n=1Xn<)=1P\left(\sum\limits_{n=1}^{\infty}X_{n}<\infty\right)=1 2. If n=11λn=\sum\limits_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty, then P(n=1Xn=)=1P\left(\sum\limits_{n=1}^{\infty}X_{n}=\infty\right)=1

Let II be countable set. Let {Tk:kI}\{T_{k}: k\in I\} be a sequence of independent exponentially distributed RVs such that Tk\mboxExp(qk)T_{k}\sim\mbox{Exp}(q_{k}) and 0<q=kIqk<0<q=\sum\limits_{k\in I}q_{k}<\infty. Denote TT as the infimum of the infinite sequence: T=inf{Tn:nN}T=\inf\{T_{n}:n\in\mathbb{N} \}Then this infimum (or TT) is attained at a unique random value KK of kk w.p.1 i.e. P(K<)=1P(K<\infty)=1Moreover TT and KK are independent with T\mboxExp(q)T\sim\mbox{Exp}(q) and P(K=k)=qkqP(K=k)=\frac{q_{k}}{q} ## Definition from class (which kinda sucks) Now define KK as follows: if there exists unique kIk\in I such that Tk=TT_{k}=T, then K=kK=k; otherwise K=K=\infty i.e. K={k\mboxuniquek\mboxs.t.Tk=TotherwiseK=\begin{cases}k&\exists\mbox{ unique }k\mbox{ s.t. }T_{k}=T \\ \infty&otherwise\end{cases}Then - P(K<)=1P(K<\infty)=1 and P(K=k)=qkqP(K=k)=\frac{q_{k}}{q} - T\mboxExp(q)T\sim\mbox{Exp}(q) - TT and KK are independent

Linked from