FIND ME ON

GitHub

LinkedIn

Static Quadratic Team

🌱

Definition
StochasticControl

Definition

Given a probability space (Ω,F,P)(\Omega,\mathcal{F},P), and an associated Random Vector ξ\xi, let {J;Γi,iN}\{ J;\Gamma^{i},i\in\mathcal{N} \} be a static stochastic team problem with the following specifications: 1. UiRmi,iN\mathbb{U}^{i}\equiv\mathbb{R}^{m_{i}},i\in\mathcal{N} i.e. the action spaces are unconstrained Euclidean spaces. 2. The loss function is a quadratic function of u\mathbf{u} for every ξ\xi: L(ξ;u):=i,jNuiRij(ξ)uj+2iNuiri(ξ)+c(ξ)L(\xi;\mathbf{u}):=\sum_{i,j\in\mathcal{N}}u^{i'}R_{ij}(\xi)u^{j}+2\sum_{i\in\mathcal{N}}u^{i'}r_{i}(\xi)+c(\xi)where: 1. Rij(ξ)R_{ij}(\xi) is a matrix-valued Random Variable, 2. ri(ξ)r_{i}(\xi) is a Random Vector, and 3. c(ξ)c(\xi) is a random variable, all generated by measurable mappings on the random state of nature ξ\xi. 3. L(ξ;u)L(\xi;\mathbf{u}) is strictly (and uniformly) convex in u\mathbf{u} a.s. i.e. α>0\exists\alpha>0 s.t. R(ξ)R(\xi) defined as a matrix composed of NN blocks, with the ijij’th block given by Rij(ξ)R_{ij}(\xi), the matrix R(ξ)αIR(\xi)-\alpha I is positive definite a.s. 4. R(ξ)R(\xi) is uniformly bounded above i.e. β>0\exists \beta>0 s.t. βIR(ξ)\beta I-R(\xi) is positive definite a.s. 5. YiRmi,iN\mathbb{Y}^{i}\equiv \mathbb{R}^{m_{i}},i\in\mathcal{N}, i.e. the measurement spaces are unconstrained Euclidean spaces. 6. yi=ηi(ξ),iNy^{i}=\eta^{i}(\xi),i\in\mathcal{N} for some appropriate Borel measurable functions ηi,iN\eta^{i},i\in\mathcal{N}. 7. Γi\Gamma^{i} is the (Hilbert) space of all Borel measurable mappings of γi:RriRmi\gamma^{i}:\mathbb{R}^{r_{i}}\to \mathbb{R}^{m_{i}}, which are in L2(Ω,F,P)L^{2}(\Omega,\mathcal{F},P). 8. ri(ξ)L2(Ω,F,P)r_{i}(\xi)\in L^{2}(\Omega,\mathcal{F},P) c(ξ)L1(Ω,F,P)c(\xi)\in L^{1}(\Omega,\mathcal{F},P) i.e. Eξ[ri(ξ)ri(ξ)]<,iNEξ[c(ξ)]<E_{\xi}\left[ r_{i}'(\xi)r_{i}(\xi) \right]<\infty,i\in\mathcal{N}\quad E_{\xi}\left[ c(\xi) \right]<\infty We call a static stochastic team quadratic if it satisfies the above conditions.

Linked from