FIND ME ON

GitHub

LinkedIn

Filter Stability

🌱

Intro

When working with the world of Belief MDPs we often would like like to characterize how the Belief MDP behaves

A filter process is stable in the sense of weak merging in expectation if for any fCb(X)f\in C_{b}(\mathbb{X}) and any prior ν\nu with μν\mu\ll\nu we have limnEμ[fdπnμfdπnν]=0\lim_{ n \to \infty } \mathbb{E}^{\mu}\left[ \left| \int\limits f \, d\pi_{n}^{\mu}-\int\limits f \, d\pi_{n}^{\nu} \right| \right]=0

A filter process is stable in the sense of weak merging Pμ\mathbb{P}^{\mu} a.s. if there exists a set of measurement sequences AYZ+A\subset \mathbb{Y}^{\mathbb{Z}_{+}} with Pμ\mathbb{P}^{\mu} probability 11 such that for any sequence in AA, for any fCb(X)f\in C_{b}(\mathbb{X}) and any prior ν\nu with μν\mu\ll\nu, we have limnfdπnμfdπnν=0Pμ a.s.\lim_{ n \to \infty } \left| \int\limits f \, d\pi_{n}^{\mu}-\int\limits f \, d\pi_{n}^{\nu} \right| =0\quad \mathbb{P}^{\mu}\text{ a.s.}

A filter process is stable in the sense of total variation in expectation if for any prior ν\nu with μν\mu\ll\nu, we have limnE[πnμπnνTV]=0\lim_{ n \to \infty } \mathbb{E}[\lVert \pi_{n}^{\mu}-\pi_{n}^{\nu} \rVert_{TV} ]=0

A filter process is stable in the sense of total variation Pμ\mathbb{P}^{\mu} a.s. if for any prior ν\nu with μν\mu\ll\nu we have limnπnμπnνTV=0Pμ a.s.\lim_{ n \to \infty } \lVert \pi_{n}^{\mu}-\pi_{n}^{\nu} \rVert _{TV}=0\quad\mathbb{P}^{\mu}\text{ a.s.}

A filter process is stable in relative entropy if for any prior ν\nu with μν\mu\ll\nu limnEμ[D(πnμπnν)]=0\lim_{ n \to \infty } \mathbb{E}^{\mu}[D(\pi_{n}^{\mu}\Vert \pi_{n}^{\nu} )]=0

A system is stable in the sense of BL-merging Pμ\mathbb{P}^{\mu} a.s. if we have limnπnμπnν=0Pμ a.s.\lim_{ n \to \infty } \lVert \pi_{n}^{\mu}-\pi_{n}^{\nu} \rVert =0\quad \mathbb{P}^{\mu}\text{ a.s.}

Linked from