FIND ME ON

GitHub

LinkedIn

Distribution

🌱

Definition
MeasureTheory

ss#Probability #MeasureTheory >[!def] Distribution >Let (Ω,F,P)(\Omega,\mathcal{F},\mathbb{P}) be a Probability Space. Let (Xn)nN(X_{n})_{n\in\mathbb{N}} be a sequence of RVs and XX an RV s.t. Xn,X:ΩRX_{n},X:\Omega\to \mathbb{R}. We define the pushforward measure X#PX_{\#}P as the law or distribution of XX i.e. for any BB(R)B\in\mathcal{B}(\mathbb{R}): X#P(B):=μ(B)=P(X1(B))=P({ωΩ:X(ω)B})=P(XB)\begin{align*} X_{\#}\mathbb{P}(B):=\mu(B)&=\mathbb{P}(X^{-1}(B))\\ &=\mathbb{P}(\{ \omega \in\Omega:X(\omega)\in B \})\\ &=\mathbb{P}(X \in B) \end{align*}Since μ\mu is the distribution of a rv then (R,B,μ)(\mathbb{R},\mathcal{B},\mu) is a valid probability space.

XμX\sim\mu means μ\mu is the of XX. We also use L(X)\mathcal{L}(X)to refer to the law of XX (i.e. μ\mu).

Let X,YX,Y be rvs. Then L(X)=L(Y)    FX(x)=FY(x), xR\mathcal{L}(X)=\mathcal{L}(Y)\iff F_{X}(x)=F_{Y}(x),\ \forall x\in \mathbb{R}

This makes some application of Extension Theorem

Let X,YX,Y be rvs. Then L(X)=L(Y)    E[f(X)]=E[f(Y)],  Borel f:RR\mathcal{L}(X)=\mathcal{L}(Y)\iff \mathbb{E}[f(X)]=\mathbb{E}[f(Y)],\ \forall \text{ Borel }f:\mathbb{R}\to \mathbb{R}

If X=YX=Y a.s. then XY.X\sim Y.

Any probability measure μ\mu on (R,B)(\mathbb{R},\mathcal{B}) is the of some rv on some probability space.

\begin{proof} Consider the probability space (R,B,μ)(\mathbb{R},\mathcal{B},\mu) and let X(ω)=ωX(\omega)=\omega. Then "Prob(XB)"=μ(ωB)=μ(B)\text{"Prob}(X\in B)\text{"}=\mu(\omega \in B)=\mu(B) \end{proof}

Linked from