Let (X,M,μ),(Y,N,ν) be σ-finitemeasure spaces and let f:X×Y→C be P-measurable. 1. Fubini: If f:X×Y→[0,+∞], set φ:X→[0,+∞] and ψ:Y→[0,+∞] as φ(x)=Y∫fxdν and ψ(y)=X∫fydμ. Then, φ is M-measurable and ψ is N-measurable and we have X∫φdμ=Y∫ψdνThat is X∫Y∫f(x,y)dν(y)dμ(x)=Y∫X∫f(x,y)dμ(x)dν(y)=X×Y∫fd(μ×ν) 2. Tonelli: Let φ∗(x)=Y∫∣fx∣dν. If X∫φ∗dμ<∞ then X×Y∫∣f∣d(μ×ν)<∞similarly for ψ∗(y). 3. If X×Y∫∣f∣d(μ×ν)<∞ then fx∈L1(ν),fy∈L1(μ) and X∫Y∫f(x,y)dν(y)dμ(x)=Y∫X∫f(x,y)dμ(x)dν(y)
Probability
For (E,E,P1),(F,F,P2)probability spaces and product measureP on (E×F,E⊗F,P). If f:E×F→R is E⊗F-measurable and if either f≥0orf∈L1 then E×F∫fdP=E∫F∫fdP2dP1=F∫E∫fdP1dP2with y↦E∫fy(x)dP1(x)measurable.
Using this theorem we then covered convolutions and how allows us to find the distribution of sums of independentrvs.
Suppose X,Y are independentrvs with distributions μ,ν respectively. Then the distribution of X+Y is given by μ∗ν, where (μ∗ν)(H)=R∫μ(H−y)ν(dy).Equivalently, assume X,Y have densities f,g, then X+Y has density f∗g.
SDEs
Let (X,M,μ),(Y,N,ν) be σ-finitemeasure spaces and let f:(X×Y,P,μ×ν)→(R,B(R))be P-measurable. Assume X∫Y∫∣f(x,y)∣dν(y)dμ(x)<∞(i.e. f∈L2(X×Y,P,μ×ν)) then, X∫Y∫f(x,y)dν(y)dμ(x)=Y∫X∫f(x,y)dμ(x)dν(y)=X×Y∫fd(μ×ν)