FIND ME ON

GitHub

LinkedIn

Measure Space

🌱

Definition
MeasureTheory

Definition

Let (X,A)(X,\mathcal{A}) be a measurable space and define a measure μ\mu on A\mathcal{A}, the triple (X,A,μ)(X,\mathcal{A},\mu) is called a measure space if 1. Monotonicity: μ(A)μ(B)\mu(A)\le\mu(B) if ABA\subseteq B 2. If μ(A)<\mu(A)<\infty then μ(B\A)=μ(B)μ(A)\mu(B\backslash A)=\mu(B)-\mu(A) 3. For every countable family of subsets (Aj)jN(A_{j})_{j\in\mathbb{N}} from A\mathcal{A} for which AjAj+1A_{j}\subset A_{j+1} (i.e. AjA_{j} is increasing in jj) we have that μ(jNAj)=limjμ(Aj)\mu\left(\bigcup_{j\in\mathbb{N}}A_{j}\right)=\lim_{j\to\infty}\mu(A_{j}) 4. For every countable family of subsets (Aj)jN(A_{j})_{j\in\mathbb{N}} from A\mathcal{A} for which AjAj+1A_{j}\supset A_{j+1} (i.e. AjA_{j} is decreasing in jj) we have that μ(jNAj)=limjμ(Aj)\mu\left(\bigcap_{j\in\mathbb{N}}A_{j}\right)=\lim_{j\to\infty}\mu(A_{j})

Linked from