FIND ME ON

GitHub

LinkedIn

Change of Variable Formula

🌱

Theorem
MeasureTheory

Let (X,F,μ)(X,\mathcal{F},\mu) be a measure space. Let (Y,G)(Y,\mathcal{G}) be a measurable space. Let T:(X,F)(Y,G)T:(X,\mathcal{F})\to(Y,\mathcal{G}) measurable. Let f:(Y,G)(R,B(R))f:(Y,\mathcal{G})\to (\mathbb{R},\mathcal{B}(\mathbb{R})) measurable. We have YfdT#μ=X(fT)dμ\int\limits _{Y}f \, dT_{\#}\mu=\int\limits _{X}(f\circ T) \, d\mu

Let XX be a rv on (Ω,F,P)(\Omega,\mathcal{F},\mathbb{P}) such that XμX\sim\mu. Then for any Borel function f:RRf:\mathbb{R}\to \mathbb{R} we have E[f(X)]=Ωf(X(ω))dP(ω)=Rf(x)dμ(x)\mathbb{E}[f(X)]=\int\limits _{\Omega}f(X(\omega)) \, d\mathbb{P}(\omega) =\int\limits _{\mathbb{R}}f(x) \, d\mu(x) provided either side is well-defined.