Let (X,M,μ) be a measure space, and let f,g:X→[0,+∞] be measurable functions. Let 1<p,q<∞ be Conjugate Exponents then ∫fgdμ≤(∫fpdμ)1/p(∫gqdμ)1/q or equivalently: Let 1≤p≤∞ and suppose p and q are Conjugate Exponents. If f∈Lp(X,M,μ) and g∈Lq(X,M,μ) then fg∈L1(X,M,μ) and we have ∥fg∥1≤∥f∥p∥g∥q
Lemma (474)
Assume p>1 and q>1 are s.t. p1+q1=1. Let u(x)≥0 and v(x)≥0 satisfy −∞∫∞u(x)pdx−∞∫∞v(x)qdxThen −∞∫∞u(x)v(x)dx≤−∞∫∞u(x)pdx1/p−∞∫∞v(x)qdx1/qor −∞∫∞u(x)v(x)dx≤∥u∥p∥v∥qMoreover, equality holds if and only if v(x)q=Cu(x)p for some C>0.