FIND ME ON

GitHub

LinkedIn

Hölder's Inequality

🌱

Theorem
InfoTheory

Let (X,M,μ)(X,\mathscr{M},\mu) be a measure space, and let f,g:X[0,+]f,g:X\to[0,+\infty] be measurable functions. Let 1<p,q<1<p,q<\infty be Conjugate Exponents then fgdμ(fpdμ)1/p(gqdμ)1/q\int\limits fg \, d\mu\le \left( \int\limits f^{p} \, d\mu \right)^{1/p}\left( \int\limits g^{q} \, d\mu \right)^{1/q} or equivalently: Let 1p1\le p\le \infty and suppose pp and qq are Conjugate Exponents. If fLp(X,M,μ)f\in L^{p}(X,\mathscr{M},\mu) and gLq(X,M,μ)g\in L^{q}(X,\mathscr{M},\mu) then fgL1(X,M,μ)fg\in L^{1}(X,\mathscr{M},\mu) and we have fg1fpgq\|fg\|_{1}\le \|f\|_{p}\|g\|_{q}

Lemma (474)

Assume p>1p>1 and q>1q>1 are s.t. 1p+1q=1\frac{1}{p}+\frac{1}{q}=1. Let u(x)0u(x)\ge 0 and v(x)0v(x)\ge 0 satisfy u(x)pdx   v(x)qdx\int\limits _{-\infty}^{\infty}u(x)^{p} \, dx \ \ \ \int\limits _{-\infty}^{\infty}v(x)^{q} \, dx Then u(x)v(x)dx(u(x)pdx)1/p(v(x)qdx)1/q\int\limits _{-\infty}^{\infty}u(x)v(x) \, dx \le \left( \int\limits _{-\infty}^{\infty} u(x)^{p} \, dx \right)^{1/p}\left( \int\limits _{-\infty}^{\infty} v(x)^{q} \, dx \right)^{1/q} or u(x)v(x)dxupvq\int\limits _{-\infty}^{\infty}u(x)v(x) \, dx \le \|u\|_{p}\|v\|_{q}Moreover, equality holds if and only if v(x)q=Cu(x)pv(x)^{q}=Cu(x)^{p} for some C>0C>0.

Linked from