NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Assume the source pdf satisfies ∫−∞∞∣x∣2+ϵf(x) dx<∞\int\limits _{-\infty}^{\infty}|x|^{2+\epsilon}f(x) \, dx<\infty−∞∫∞∣x∣2+ϵf(x)dx<∞ for some ϵ>0\epsilon>0ϵ>0. Then limN→∞N2D∗(N)=112∥f∥13\lim_{ N \to \infty } N^{2}D^{*}(N)=\frac{1}{12}\|f\|_{\frac{1}{3}}N→∞limN2D∗(N)=121∥f∥31 or by Hölder’s Inequality D∗(N)=minGD(QG,N)≈112N2∥f∥13D^{*}(N)=\min_{G}D(Q_{G,N})\approx \frac{1}{12N^{2}}\|f\|_{\frac{1}{3}}D∗(N)=GminD(QG,N)≈12N21∥f∥31
Gain of Transform Coding
High Resolution Optimality of KLT