Let (X,F,μ) be a Measure Space, let E∈F. Let f:X→R+ be a Simple Function: f=i=1∑nai1Ai where Ai=f−1({αi}),∀1≤i≤n. The Lebesgue Integral of f with respect to measureμ is defined as: E∫fdμ=i=1∑naiμ(Ai∩E)where Ai∈F,ai≥0.
Let S1,S2 be two simple functions s.t. S1(x)≤S2(x),∀x∈X. Then ∫S1dμ≤∫S2dμ
We can further the definition of where for f:X→[0,∞)measurable we define the Lebesgue Integral as: X∫fdμ=sup⎩⎨⎧X∫gdμ:0≤g<f,gsimple⎭⎬⎫
Finally, adding on to the Integral of Positive Measurable Functions, let f:X→R be measurable. Let f+=max(f,0), f−=max(−f,0) we define the Lebesgue Integral as: X∫fdμ=X∫f+dμ−X∫f−dμ
Let (X,M,μ) be a Measure Space. Let f,g be measurable functions. Then, 1. Monotonicity: If 0≤f≤g, then E∫fdμ≤E∫gdμ 2. Monotonicity: If A⊆B, and f≥0 then, A∫fdμ≤B∫fdμ 3. Linearity: If f≥0 and c is a constant, 0≤c<∞ then c∫fdμ=∫cfdμ 4. If f(x)=0,∀x∈E, then E∫fdμ=0even if μ(E)=∞. 5. If μ(E)=0 then E∫fdμ=0even if f(x)=∞, ∀x∈E. 6. E∫fdμ=X∫f⋅1Edμ
If f:X→C is s.t. f=u+iv and u,v:X→R are measurable functions, and if f∈L1(X,M,μ) then E∫fdμ=E∫u+dμ−E∫u−dμ+iE∫v+dμ−iE∫v−dμfor all E∈M. ## Note: f measurable⟹f+,f− measurableby Composition of Measurable Functions. This is only possible with Borel σ-algebra hence why we restrict ourselves to this instead of Lebesgue Measurable. ## Properties 1. Linearity: I(αf+βg)=αI(f)+βI(g) 2. Monotonicity:f≤g⟹I(f)≤I(g)